Improving prediction models with new markers: a comparison of updating strategies

نویسندگان

  • D. Nieboer
  • Y. Vergouwe
  • Danna P. Ankerst
  • Monique J. Roobol
  • Ewout W. Steyerberg
چکیده

BACKGROUND New markers hold the promise of improving risk prediction for individual patients. We aimed to compare the performance of different strategies to extend a previously developed prediction model with a new marker. METHODS Our motivating example was the extension of a risk calculator for prostate cancer with a new marker that was available in a relatively small dataset. Performance of the strategies was also investigated in simulations. Development, marker and test sets with different sample sizes originating from the same underlying population were generated. A prediction model was fitted using logistic regression in the development set, extended using the marker set and validated in the test set. Extension strategies considered were re-estimating individual regression coefficients, updating of predictions using conditional likelihood ratios (LR) and imputation of marker values in the development set and subsequently fitting a model in the combined development and marker sets. Sample sizes considered for the development and marker set were 500 and 100, 500 and 500, and 100 and 500 patients. Discriminative ability of the extended models was quantified using the concordance statistic (c-statistic) and calibration was quantified using the calibration slope. RESULTS All strategies led to extended models with increased discrimination (c-statistic increase from 0.75 to 0.80 in test sets). Strategies estimating a large number of parameters (re-estimation of all coefficients and updating using conditional LR) led to overfitting (calibration slope below 1). Parsimonious methods, limiting the number of coefficients to be re-estimated, or applying shrinkage after model revision, limited the amount of overfitting. Combining the development and marker set using imputation of missing marker values approach led to consistently good performing models in all scenarios. Similar results were observed in the motivating example. CONCLUSION When the sample with the new marker information is small, parsimonious methods are required to prevent overfitting of a new prediction model. Combining all data with imputation of missing marker values is an attractive option, even if a relatively large marker data set is available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear lap joint interface modeling and updating strategies for assembled structures

A comparison between two known strategies of modeling lap joint interfaces, namely, zero-thickness and thin layer interface theories and their associated updating procedures, is made. Finite element...

متن کامل

Chaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments

Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...

متن کامل

A Comparison Study on Various Finite Element Models of Riveted Lap Joint by the Use of Dynamic Model Updating

Till now, various models have been proposed in literature to simulate the behavior of riveted structures. In order to find the most accurate analytical method in modeling the dynamic behavior of riveted structures, a comparison study is performed on several of these models, in this research. For this purpose, experimental modal analysis tests are conducted on a riveted plate to verify the effic...

متن کامل

Comparison of Bayesian and Frequentist Methods in Estimating the Net Reclassification and Integrated Discrimination Improvement Indices for Evaluation of Prediction Models: Tehran Lipid and Glucose Study

Introduction: The Frequency-based method is commonly used to estimate the Net Reclassification Improvement (NRI)- and Integrated Discrimination Improvement (IDI) indices. These indices measure the magnitude of the performance of statistical models when a new biomarker is added. This method has poor performance in some cases, especially in small samples. In this study, the performance of two Bay...

متن کامل

Optimal Strategies of Increasing Business Alignment, in Social Security Organization, with Quality Function Deployment (QFD) Approach

Considering the importance of the concept of strategic alignment of information technology (IT) in today economic organizations, this study attempted to extract the organization's IT strategies in order to increase the degree of strategic alignment and consequently the optimal strategies in the field of marketing and service delivery for social security organization. Using QFD technique and hie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016